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Abstract. This paper studies the four types: lower, upper, lower-upper and

upper-lower focusing on developping theory to measure the negative tail depen-

dence

Introduction

As a consequence of globalization and relaxed regulations on financial and insur-

ance markets the dependencies between financial time series have increased during

recent times. Particularly in extreme events such as economic crisis, these de-

pendencies affect the profit of companies as well as the financial stability of the

financial sector. Risk measures such as VaR (Value at Risk) also depend on the de-

pendence structure of extreme values. In order to measure these dependencies, tail

dependence measures are used, these measures rely on copulae, tail copulae and

the tail dependence coefficient (TDC) in order to explain the dependence structure

of extreme values (see Embrechts et al. (1997)).

In the study of financial time series it has become increasingly important to dis-

tinguish between different types of dependence. The structure dependence of time

series have been studied for a long time, traditionally through the use of correla-

tion. Due to drawbacks of this measure new methodologies have been developped,

in particular the use of copulae has proved to be the way forward (see McNeil et al.

(2005), Chapter 5), however this analysis mainly focuses on positive correlation

by the use of usual copulae and survival copulae. The use of copulae has been

particularly succesful to measure dependence on the extreme values in what is

known as tail dependence through the use of tail copulae and the tail dependence

coefficients (TDCs), but yet again the analysis has been mostly directed to the left
1
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(lower tail dependence) and the right tail (upper tail dependence). Many times,

when analysing financial time series it happens that two series present the same

type of extreme behaviour, either upper or lower tail dependence. However it can

also happen that a value in the left tail in one series may occur at the same time

when a value in the right tail of the other series appears. This can be observed

in prices of stocks that affect a certain portfolio as well as in stock indices returns

and other financial time series. We will refer to this as lower-upper (LU) tail de-

pendence or upper-lower (UL) tail dependence. Although UL tail dependence may

seem to be covered by LU tail dependence, in most of the cases, it is worth to be

studied separately. The use of estimators for the UL and LU TDCs has already

observed in finance (see Zhang (2007)), In this paper we define new copulae asso-

ciated to the sample that enable us to capture the whole dependence structure of

the series.

This work is divided in two sections:In the first section the theory of tail de-

pendence is studied and theory on LU and UL tail dependence is developed from

probability functions, copulae, tail copulae and the TDC, mathematical proofs

are provided on main results. In order to study LU and UL tail dependence it is

necessary to work with certain probability functions, which we call LU and UL

probability functions.Using this probability functions we introduce new types of

copulae, LU and UL copulae. The first results are related to the equalities con-

necting these copulae and then to connect it to usual and survival copulae. Given

that the usual copula is the copula of distribution functions, to differentiate it

from survival and other copulae, we will refer to it as distributional copula. The

boundaries of copulae are used to restrict LU and UL probability functions and

results on exchangeable copulae are presented.

In the second section upper, lower, LU and UL tail dependence are modelled,

we revise some of the most important copulae models discussed in literature. The

first examples of copulae we study are the fundamental copulae which encompasses
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three cases: the independent case with the independent copula, the perfect pos-

itive dependence case with the comonotonicity copula and the perfect negative

dependence case with the countercomonotonicity copula. We then study two ex-

amples of implicit copulae, for which there is no closed form, the Gaussian and

the Student’s t copula. After that we study the archimidean copulae, such as

the Gumbel, Clayton, Frank and the Generalized Clayton copula. Finally we also

study a non-archimidean copula which is the Marshal-Olkin copula. For all exam-

ples we present their corresponding tail copulae and TDCs to see if they account

for tail dependence.

1. Copulae, Tail Copulae and the Tail Dependence Coefficients

1.1. Copula. In order to define and study the dependence structure between two

random variables we use the concept of copula. The following study is based

on copulae which describe the dependence structure of multidimensional random

variables. Here we restrict to the continuous two dimensional case. We first study

the theory of copula and introduce the LU and UL copulae along with results

regarding these copulae and then we focus on their relationship with distributional

and survival copulae. After this we study Tail Copulae and the TDC for the four

types of copula: distributional, survival, LU and UL.

The concept of copula was first introduced by Sklar (1959), and is now a cor-

nerstone topic in finance (see Nelsen (1999) or McNeil et al. (2005), Chapter 5),

a two dimensional copula is defined in the following way:

Definition 1. A two dimensional copula C(u, v) is a distribution function on

[0, 1]2 with standard uniform marginal distributions.

In the two dimensional case copulae functions C : [0, 1]2 → [0, 1] are used to link

bivariate distribution functions with their corresponding marginal distributions.

On the other hand, survival copulae: C : [0, 1]2 → [0, 1] link bivariate survival

functions with their corresponding marginal survival functions.



2 YURI SALAZAR FLORES

Let (X;Y )0 be a random vector with joint distribution function F (x, y) =

P (X ≤ x, Y ≤ y), marginals G(x) = P (X ≤ x), H(y) = P (Y ≤ y), sur-

vival function F (x, y) = P (X > x, Y > y) and marginal survival functions ,

G(x) = P (X > x) and H(y) = P (Y > y). Two versions of Sklar’s theorem

guarantee the existence and uniqueness of copulae C and C (see Schweizer and

Sklar (1983))

F (x, y) = C(G(x),H(y)), which is equivalent to C(u, v) = F (G−1(u),H−1(v))

(1.1)

and

F (x, y) = C(G(x),H(y)), which is equivalent to C(u, v) = F (G
−1
(u),H

−1
(v)).

(1.2)

Given that G
−1
(u) = G−1(1 − u), equation (1.2) is also equivalent to C(u, v) =

F (G−1(1− u),H−1(1− v)).

1.1.1. Sklar’s Theorem for LU and UL Probability Functions. In this case

we refer to C as distributional copula and to C as survival copula. In the same

way that a distributional copula and a survival copula explain the dependence

structure of two random variables between their left and right tails respectively,

we now introduce a new type of copula to explain the dependence structure of

two random variables between the left tail of the first one and the right tail of the

other one, and vice versa.

Definition 2. Let (X,Y )0 be a random vector, its lower-upper (LU) and upper-

lower (UL) probability funtions are FLU(x, y) = P (X ≤ x, Y > y) and FUL(x, y) =

P (X > x, Y ≤ y). If G, H, G and H are the disbtributions and survival functions

of X and Y we refer to G and H as the marginals of FLU and to G and H as the

marginals of FUL
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The copulas we consider are CLU and CUL that link the functions in definition

(2) with their corresponding marginals. We refer to them as copulae of the LU

and UL probability functions or simply LU and UL copulae. The following version

of Sklar’s theorem guarantees the existence and uniqueness of CLU and CUL in

the continuous case. A more general version can be stated following the same

reasoning of the proof of Skar’s theorem in the non-continuous case, but here we

restrict to this case (see Schweizer and Sklar (1983) or Nelsen (1999), p. 18).

Theorem 1. Sklar’s theorem for lower-upper and upper-lower probability funtions.

Let (X,Y )0 be a random vector, FLU and FUL its LU and UL probability func-

tions as in definition (2) and the distribution functions of X and Y , G and H be

continuous, then there exist unique copulae CLU and CUL : [0, 1]
2 → [0, 1], such

that, for all x and y in [−∞,∞],

FLU(x, y) = CLU(G(x), H(y)), (1.3)

FUL(x, y) = CUL(G(x), H(y)). (1.4)

Conversely, if we have any copulae CLU and CUL satisfying definition (1) and G,

H, G and H univariate disbtributions and its survival functions then, considering

the previous equations, FLU defines a LU probability function with marginals G

and H and FUL defines an UL probability function with marginals G and H.

Proof. The proof of this theorem is analogous to the proof of Sklar’s theorem in

the continuous case, (see McNeil et al (2005), p.186). From Defintion (2) and

considering that P (X ≤ x) = P (F (X) ≤ F (x)) for any distribution function F ,

we have that for any x and y in [−∞,∞]

FLU(x, y) = P (G(X) ≤ G(x),H(Y ) ≤ H(y)).

Using the continuity of G and H (see McNeil et al. (2005), proposition (5.2 (2)),

p.185), G(X) and H(Y ) are uniformly distributed, which implies 1−H(Y ) is uni-

formly distributed, so we have that both G(X) and H(Y ) have standard uniform
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distributions. Definition (1) implies that the distribution function of (G(x), H(y))

is a copula. We denote this copula by CLU , yielding equation (1.3). Evaluating

this equation in the generalized inverses G←(u) and H←(1−v) for u, v ∈ [0, 1] and
using the fact that one of the properties of the generalized inverse is that when T

is continuous T ◦ T←(x) = x, we get:

CLU(u, v) = FLU(G
←(u),H←(1− v)) ,

which explicitly represents CLU in terms of FLU and its marginals implying its

uniqueness.

For the converse statement of the theorem let CLU be any copula satisfying defi-

nition (1), W = (U, V ) a random vector with distribution function CLU and G and

H univariate distribution and survival functions. We now define Z = (X,Y ) :=

(G←(U), H←(1 − V )). Considering that another property of the generalized in-

verse is that if T is right continuous, like distribution functions, T (x) ≥ y ⇐⇒
T←(y) ≤ x, the LU probabilty function of Z is

P (X ≤ x, Y > y) = CLU(G(x),H(y)).

This implies that FLU defined in (1.3) is the LU probability function of Z with

marginals P (X ≤ x) = P (G←(U) ≤ x) = P (U ≤ G(x)) = G(x) and P (Y >

y) = P (H←(1− V ) > y) = P (V ≤ H(y)) = H(y). Note that for this theorem we

refered to generalized inverses rather than inverse functions, as the first are more

general. However throughout this work, whenever we are not proving a general

property, we assume the distribution functions have inverse functions. For the

properties of the generalized inverse function used in this proof (see McNeil et al

(2005), proposition (A.3)) ¤

Note that this theorem implies that in the continuous case CLU and CUL are the

LU and UL probability functions of (G(X), H(Y )) and (G(x), H(y)) characterized

as:
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FLU(x, y) = CLU(G(x),H(y)), CLU(u, v) = FLU(G
−1(u),H−1(1− v)) (1.5)

and

FUL(x, y) = CUL(G(x),H(y)), CUL(u, v) = FUL(G
−1(1− u),H−1(v)). (1.6)

1.1.2. Properties of Distributional, Survival, LU and UL Copulae. As

we know from definition (1) the copulae we have studied so far are distribution

functions with uniform marginals, the following proposition characterizes their

corresponding random vectors.

Proposition 1. Let (X,Y ) be a random vector with continuous marginal distrib-

ution functions G and H, with corresponding distributional, survival, LU and UL

copulae C, C, CLU and CUL and let (U, V ) = (G(X), H(Y )) then C is the dis-

tribution function of (U, V ), C of (1 − U, 1 − V ), CLU of (U, 1 − V ) and CUL of

(1− U, V )

Proof. Using equations (1.1), (1.2), (1.5) and (1.6) we evaluated the corresponding

distribution functions in terms of the copulae and obtained

P (U ≤ u, V ≤ v) = C(u, v),

P (1− U ≤ u, 1− V ≤ v) = C(u, v),

P (U ≤ u, 1− V ≤ v) = CLU(u, v),

P (1− U ≤ u, V ≤ v) = CUL(u, v).

¤

Similar to a distributional copula (see McNeil et al (2005), proposition (5.6)), in

the continuous case the survival, the LU and UL copulae are also invariant under

strictly increasing transformations. We state this in this proposition:
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Proposition 2. Let T! and T2 be strictly increasing functions and (X,Y ) a random

vector with corresponding distributional, survival, LU and UL copulae C, C , CLU

and CUL then (T1(X), T2(Y )) also has the same corresponding copulae.

Proof. We prove this for the survival, the LU and UL copulae using the same

arguments used for the distributional copula. Let eG(u) := G◦T←1 (u) and eH(v) :=
H ◦ T←2 (v).
i) eG and eH are the respective distribution functions of T1(X) and T2(Y ).

ii) T←i ◦ Ti(x) = x, i = 1, 2, which implies G(u) = eG(T1(u)) and H(v) =eH(T2(v)).
iii) D ◦D←(x) = x for any univariate continuous distribution function D.

(See McNeil et al. (2005) propositions (5.6), and (A.3 vii) and (viii)). Given

that (i) holds, as a notation, we use the tildeeto denote the probability functions
associated to (T1(X), T2(Y )). Considering the properties mentioned above and

using equations (1.1), (1.2), (1.5) and (1.6) that define copulae, we have:

C(u, v) = F (G
←
(u), H

←
(v))

= eF (eG←(u), eH←
(v))

= eC(u, v).
Also

CLU(u, v) = FLU(G
←(u), H

←
(v))

= gFLU( eG←(u), eH←
(v))

= gCLU(u, v).
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And:

CUL(u, v) = FUL(G
←
(u), H←(v))

= gFUL(
eG←(u), eH←(v))

= gCUL(u, v).

For the expressions of C, CLU and CUL we used: (iii), (ii), (i), that survival

functions and their generalized inverses are non-increasing, the continuity of the

random variables and equations (1.2), (1.5) and (1.6). These results prove that the

copulae associated to (X,Y ) are the same as the copulae associated to (T1(X), T2(Y )).

Note that given that this is a general statement we used ← instead of −1 as this

statement holds for the general inverse function. ¤

Just as other copulae the LU and UL copulae satisfy the Fréchet bounds for

copulae

max{u+ v − 1, 0} ≤ CLU(u, v), CUL(u, v) ≤ min{u, v}.

These bounds allow us to establish bounds for the LU and UL probability functions

in terms of its marginals and hence in terms of the associated distribution functions,

i.e.

G(x)−min{G(x),H(y)} ≤ FLU(x, y) ≤ min{G(x), 1−H(y)}, (1.7)

H(y)−min{G(x),H(y)} ≤ FUL(x, y) ≤ min{1−G(x),H(y)}.

A well known relationship that links distributional copulae and survival copulae is

C(u, v) = u+ v − 1 + C(1− u, 1− v) (1.8)

The same relationship holds for LU and UL copulae, furthermore it is possible to

link LU and UL copulae with distributional and survival copulae, we show and

prove such relationships in the next proposition.
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Proposition 3. Let (X,Y ) be a random vector with continuous marginal distri-

bution functions G and H, C its associated distributional copula, C its survival

copula and CLU and CUL its associated LU and UL copulae, then the following

relationships hold

CLU(u, v) = u+ v − 1 + CUL(1− u, 1− v), (1.9)

u = CLU(u, v) + C(u, 1− v) = CUL(u, v) + C(u, 1− v), (1.10)

v = CLU(u, v) + C(1− u, v) = CUL(u, v) + C(1− u, v). (1.11)

Proof. The previous equations follow from the fact that in the continuous case

both G(X) and H(Y ) follow standard uniform distributions. Let us consider the

events

A1 = {X ≤ G←(u)}, B1 = {Y ≤ H←(v)},

A = {X > G←(1− u)}, B = {Y > H←(1− v)}.

The probabilities of this events are obtained as, P (A) = P (A1) = u and P (B) =

P (B1) = v. To prove the proposition we use the representation of copulae in

equations (1.1), (1.2), (1.5), (1.6), and set theory. For (1.9) we have that

CLU(u, v) = P (A1 ∩B)

= 1− [P (Ac
1) + P (Bc)− P (Ac

1 ∩Bc)]

= u+ v − 1 + CUL(1− u, 1− v).

The other equations are proved in a similar way

u = P (A1 ∩B) + P (A1 ∩Bc)

= CLU(u, v) + C(u, 1− v),

u = P (A ∩B1) + P (A ∩Bc
1)

= CUL(u, v) + C(u, 1− v),
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v = P (A1 ∩B) + P (Ac
1 ∩B)

= CLU(u, v) + C(1− u, v),

v = P (A ∩B1) + P (Ac ∩B1)

= CUL(u, v) + C(1− u, v).

¤

Note that an equivalent equation to (1.9) for CUL is also valid if we substitute

u and v by (1− u) and (1− v) in this equation. Equations (1.10) and (1.11) are

meant to express CLU and CUL in terms of other copulae. If we want to do the

opposite, we would have to substitute v by (1 − v) in equation (1.10) and u by

(1−u) in equation (1.11). This proposition is very helpful when we study LU and

UL tail dependence in the case when we know the distributional copula.

1.1.3. Transverse Copulae. Proposition (3) states specific relationships among

all four copulae we have defined so far. Equation (1.9) proves that the relationship

CLU -CUL is the same as the relationship C -C. Equation (1.10) proves the same

for the relationships CLU -C and CUL-C and (1.11) for CLU -C and CUL-C. In order

to characterize such relationships we define:

Definition 3. If C is a copula according to definition (1), its transverse copula

CT is defined as

CT (u, v) := u+ v − 1 + C(1− u, 1− v).

Its U-transverse copula is CU defined as

CU(u, v) := v − C(1− u, v).

And its V-transverse copula CV is

CV (u, v) := u− C(u, 1− v).
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Note that the three types of transversity are reflexible, meaning that if one copula

C is the transverse copula of C∗, in any of the three kinds of transversity, then

C∗ is the transverse copula of C, in the same type of transversity. To check this,

replace u and v with (1− u) and (1− v) in the first equality, u with (1− u) in the

second one and v with (1−v) in the third one. We say two copulae are transverse.

Propositions (1) and (3) not only imply that transverse copulae are well defined

in the sense that they are indeed copulae according to definition (1), they also

provide a specific expression of the random vectors of which they are distribution

functions in terms of (U, V ), the random vector with distribution function C. We

prove this in the following proposition.

Proposition 4. Let C be a copula according to definition (1), and let (U, V ) be

the random vector with distribution function C, then the transverse copulae of

definition (3) are all copulae according to definition (1) and they satisfy that CT is

the distribution function of (1−U, 1−V ), CU of (1−U, V ) and CV of (U, 1−V ).

Proof. (X,Y ) := (U, V ) is a random vector with marginals G = H = I and

corresponding distributional copula C. Sklar’s theorem guarantees the existence

and uniqueness of the corresponding survival, LU and UL copulae, C, CLU and

CUL. Using their uniqueness, equation (1.8) and proposition (3) we know that:

C = CT , CLU = CV and CUL = CU which implies that they are copulae. Definition

(1) finishes the proof. ¤

It follows from proposition (4) that CU and CV are transverse, CU and CT are

V-transverse and CV and CT are U-transverse, this can also be checked using def-

inition (3). Proposition (3) provides the transversity relationships for the copulae

associated to a random vector, the concept of transversity is used to characterize

the relationships among the copulae associated to a random vector. To illustrate

this, in Table 1 we present two cartesian planes with a horizontal axis, that we
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V V

CV CT

C CU
U

CLU C

C CUL

U

Table 1. Relationship Structure of Copulae

call the U axis and a vertical axis, that we call the V axis, each one of the four

quadrants has a positive or a negative sign on each axis.

Table 1 characterizes the relationship structure of the copulae associated to

a random vector. Two copulae are transverse when they are in a diagonal, U-

transverse when they have different sign on the U axis and V transverse when

they have different sign on the V axis. The first part of the table comes from

proposition (4) and the second one from definition (3) and proposition (3).

Table is very useful when we first set a specific copula C∗ as distributional

copula and then evaluate the corresponding C∗, C∗LU , and C
∗
UL. If we want to set

C∗ as say LU copula we do not have obtain the other copulae again because we

already know the relationship structure of all four copulae from Table 1. Using

the concept of transversity we can explain the whole relationship structure among

the distributional, survival, LU and UL copulae. We obtain results on transversity

such as proposition (5) that we later apply to the copulae associated to a random

vector. Another useful concept that we use later is exchangeability which we now

define in the bivariate case:

Definition 4. A random vector (X,Y ) is said to be exchangeable if (X,Y )
d
=

(Y,X). A copula C is said to be exchangeable if it is the distribution function of

an exchangeable vector, in this case the copula satisfies C(u, v) = C(v, u)

The following proposition provides equivalences for the exchangeability of trans-

verse copulae and follows from definition (3):
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Proposition 5. Let C be a copula with corresponding transverse copulae as in

definition (3), then the following equivalences hold:

i) C is exchangeable⇐⇒ CT is exchangeable⇐⇒ CU(u, v) = CV (v, u).

ii) C ≡ CT ⇐⇒ CU ≡ CV , C ≡ CU ⇐⇒ CV ≡ CT and C ≡ CV ⇐⇒ CU ≡
CT .

iii) C and CV are exchangeable =⇒ C ≡ CT and CU ≡ CV .

Proof. i) We prove this by proving A ⇐⇒ B and A ⇐⇒ C

A ⇐⇒ B follows from the definition of transverse copula from which we can

express both copulae in terms of each other.

For A ⇐⇒ C we know from definition (3) that

CU(u, v)− CV (v, u) = C(v, 1− u)− C(1− u, v). (1.12)

Equation (1.12) proves the equivalence, because if C is exchangeable then the right

hand side is zero implying the desired equation. Now if CU(u, v) = CV (v, u) then

the left hand side is zero proving that C is exchangeable.

ii) From definition (3) we know that

CU(u, v)− CV (u, v) = CT (1− u, v)− C(1− u, v), (1.13)

CV (u, v)− CT (u, v) = CU(u, 1− v)− C(u, 1− v),

CU(u, v)− CT (u, v) = CV (1− u, v)− C(1− u, v).

Equation (1.13) implies the equivalences using the same arguments we used in

(1.12) for (i).

iii) Using the assumption and equation (1.12) we know that

CU(u, v)− CV (u, v) = C(v, 1− u)− C(v, 1− u) = 0.

Hence, CU ≡ CV and (ii) implies C ≡ CT . ¤
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In general copulae are used to explain dependence structure between tails of

random variables, LU and UL copulae are useful to explain the dependence struc-

ture between the left tail of one random variable and the right tail of the other

one, however when it comes to measure this dependence “deep” into the tail, the

concept of tail copula is oftenly used, (see Embrechts et al. (1997) or Schmidt and

Stadtmüller (2006)). It must be said that tail copulae are not copula according to

definition (1) but there are a number of reasons that justify this name, including

the fact that is defined as a limit of copulae and that it describes the dependence

structure of the tails in a similar way to the way a copula does.

1.2. Tail Copulae and the Tail Dependence Coefficients. Both tail copulae

and the TDCs describe the dependence structure between two random variables

in the tail. Equation (1.14) shows how tail copulae captures such structure. Tail

copulae was introduced as a generalization of the case u = v = 1, that corresponds

to the TDC (see Schmidt and Stadtmüller (2006)).

In equation (1.20) we see, in an intuitive way, why this coefficient is used to

measure tail dependence. Because of this equation (1.14) and (1.20) can be used

as definitions of tail copula and TDC. We use definitions (11) and (12) as they are

easier to deal with when it comes to obtaining mathematical results, however it

must be noted that they are equivalent.

Definition 5. Let Z = (X,Y )0 be a random vector with corresponding copulae C,

C, CLU and CUL. Whenever the following limits exist on R
2

+ := [o,∞]2\{(∞,∞)}

ΛL(u, v) : = lim
t→∞

tC
³u
t
,
v

t

´
,

ΛU(u, v) : = lim
t→∞

tC
³u
t
,
v

t

´
,

ΛLU(u, v) : = lim
t→∞

tCLU(
³u
t
,
v

t

´
),

ΛUL(u, v) : = lim
t→∞

tCUL

³u
t
,
v

t

´
.
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The functions ΛL, ΛU , ΛLU , ΛUL : R
2

+ → R are called the lower, upper, lower-upper

and upper-lower tail copulae associated to Z. In general, if Λ(u, v) := lim
t→∞

tC(u
t
, v
t
),

with the same assumptions as before and with C any copula according to definition

(1) we call Λ : R2+ → R a tail copula. We say that two tail copulae are transverse,

any of the kinds of transversity in definition (3), if their underlying copulae are

transverse.

Note that from this definition it is clear that proposition (5) holds for tail cop-

ulae.

Let U = G(X) and V = H(Y ). The following relationships regarding tail

copulae and conditional probabilities are useful when defining estimatiors for tail

copulae (see Schmidt and Stadtmüller (2006), p. 309):

ΛL(u, v) = v lim
t→∞

P
³
U ≤ u

t
|V ≤ v

t

´
= u lim

t→∞
P
³
V ≤ v

t
|U ≤ u

t

´
, (1.14)

ΛU(u, v) = v lim
t→∞

P
³
U ≥ 1− u

t
|V ≥ 1− v

t

´
= u lim

t→∞
P
³
V ≥ 1− v

t
|U ≥ 1− u

t

´
,

ΛLU(u, v) = v lim
t→∞

P
³
U ≤ u

t
|V ≥ 1− v

t

´
= u lim

t→∞
P
³
V ≥ 1− v

t
|U ≤ u

t

´
,

ΛUL(u, v) = v lim
t→∞

P
³
U ≥ 1− u

t
|V ≤ v

t

´
= u lim

t→∞
P
³
V ≤ v

t
|U ≥ 1− u

t

´
.

It is sometimes useful to express the tail copula as ΛL(u, v) = lim
h→0

C(hu,hv)
h

. We use

the function Q : h → C(hu, hv), which is a function that goes from R → R, to

obtain useful expressions for tail copulae. The chain rule states that whenever the

partial derivatives of C exist, the derivative of Q with respect to h can be obtained

in terms of C’s partial derivatives:

dQ

dh
=

∂C

∂u
(hu, hv) · u+ ∂C

∂v
(hu, hv) · v.

Then using l’Hoppital’s theorem we know that ΛL(u, v) = lim
h→0

dQ
dh
. Furthermore,

again ussing the chain rule, and equations (1.8), (1.10) and (1.11), we can express
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the other tail copulae as well in terms of the partial derivatives of C

ΛL(u, v) = u ·
µ
lim
h→0

∂C

∂u
(hu, hv)

¶
+ v ·

µ
lim
h→0

∂C

∂v
(hu, hv)

¶
, (1.15)

ΛU(u, v) = u+ v − u ·
µ
lim
h→0

∂C

∂u
(1− hu, 1− hv)

¶
− v ·

µ
lim
h→0

∂C

∂v
(1− hu, 1− hv)

¶
,

ΛLU(u, v) = u− u ·
µ
lim
h→0

∂C

∂u
(hu, 1− hv)

¶
+ v ·

µ
lim
h→0

∂C

∂v
(hu, 1− hv)

¶
,

ΛUL(u, v) = v + u ·
µ
lim
h→0

∂C

∂u
(1− hu, hv)

¶
− v ·

µ
lim
h→0

∂C

∂v
(1− hu, hv)

¶
.

This expresion is particularly helpful when C has a closed form. It also enables

us to express a tail copula in terms of conditional probabilities using the following

relationship (see McNeil et al. (2005), eq 5.15, p. 196):

CV |U(v|u) = P (V ≤ v|U = u)

=
∂C

∂u
(u, v)

And also CU |V (u|v) = ∂C
∂v
(u, v). In the case when U = G(X) and V = H(Y ) we

have

∂C

∂u
(u, v) = PY |X(H

−1(v)|G−1(u)) (1.16)

∂C

∂v
(u, v) = PX|Y (G

−1(hu)|H−1(hv)).

In this case, the expresion for ΛL is:

ΛL(u, v) = u · (lim
h→0

PY |X(H
−1(hv)|G−1(hu))) + v · (lim

h→0
PX|Y (G

−1(hu)|H−1(hv))).

(1.17)

(analogous expressions for the other tail copulae can be obtained in the same way

from equations (1.16) and (1.15)). If the copula C is exchangeable, it holds that
∂C
∂v
(u, v) = ∂C

∂u
(v, u) and proposition (5i) implies that CLU(u, v) = CUL(v, u). Thus,
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we can get equation (1.15) only in terms of ∂C
∂u

ΛL(u, v) = u ·
µ
lim
h→0

∂C

∂u
(hu, hv)

¶
+ v ·

µ
lim
h→0

∂C

∂u
(hv, hu)

¶
, (1.18)

ΛU(u, v) = u+ v − u ·
µ
lim
h→0

∂C

∂u
(1− hu, 1− hv)

¶
− v ·

µ
lim
h→0

∂C

∂u
(1− hv, 1− hu)

¶
,

ΛLU(u, v) = u− u ·
µ
lim
h→0

∂C

∂u
(hu, 1− hv)

¶
+ v ·

µ
lim
h→0

∂C

∂u
(1− hv, hu)

¶
,

ΛUL(u, v) = ΛLU(v, u).

In the exchangeable case, we have the following expression for the lower tail copula

ΛL(u, v) = u · (lim
h→0

PY |X(H
−1(hv)|G−1(hu))) + v · (lim

h→0
PY |X(G

−1(hu)|H−1(hv)))

(1.19)

(other tail copulae can be expressed similarly using equations(1.18) and (1.16)).

This expression is particularly useful to determine the other three tail copulae

when we have a Gaussian or a Student’s t copula.

Determining whether or not tail dependence is present and measuring depen-

dence between extreme values have been done for sometime using the concept of

tail dependence (see Schmidt and Stadtmüller (2006)). This has been done by

introducing a tail dependence coefficient (TDC) which has the advantage of being

very intuitive and concise, we now introduce such concepts for all copulae we have

been studying.

Definition 6. Let Z = (X,Y )0 be a random vector with corresponding copulae C,

C, CLU and CUL. Its corresponding lower, upper, lower-upper and upper-lower tail
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dependent coefficients (TDCs), is defined, whenever such limits exist, as

λL : = lim
t→∞

tC

µ
1

t
,
1

t

¶
,

λU : = lim
t→∞

tC

µ
1

t
,
1

t

¶
,

λLU : = lim
t→∞

tCLU

µ
1

t
,
1

t

¶
,

λUL : = lim
t→∞

tCUL

µ
1

t
,
1

t

¶
.

Z is said to be lower, upper, lower-upper or upper-lower tail dependent when its

corresponding λ > 0 and independent when its corresponding λ = 0. In general,

if λ := lim
t→∞

tC(1
t
, 1
t
), with the same assumptions as before and with C any copula

according to definition (1), we call λ a tail dependence coefficient. We say that

two TDC are transverse, any of the kinds of transversity in definition (3), if their

underlying copulae are transverse.

Note that proposition (5) can be used to determine some cases in which the

TDCs are equal. If the corresponding tail copula Λ exists, the TDC is λ = Λ(1, 1).

We use this to present the following version of equation (1.14), which shows a more

intuitive way of how the TDC captures the tail dependence structure between two

random variables

λL = lim
t→∞

P

µ
U ≤ 1

t
|V ≤ 1

t

¶
= lim

t→∞
P

µ
V ≤ 1

t
|U ≤ 1

t

¶
, (1.20)

λU = lim
t→∞

P

µ
U ≥ 1− 1

t
|V ≥ 1− 1

t

¶
= lim

t→∞
P

µ
V ≥ 1− 1

t
|U ≥ 1− 1

t

¶
,

λLU = lim
t→∞

P

µ
U ≤ 1

t
|V ≥ 1− 1

t

¶
= lim

t→∞
P

µ
V ≥ 1− 1

t
|U ≤ 1

t

¶
,

λUL = lim
t→∞

P

µ
U ≥ 1− 1

t
|V ≤ 1

t

¶
= lim

t→∞
P

µ
V ≤ 1

t
|U ≥ 1− 1

t

¶
.
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In the case U = G(X) and V = H(Y ), we can use the inverse of the distribution

functions, the quantile functions, to express the coefficients in terms of (X,Y ) and

the quantile functions.

As we mentioned before, tail copula was introduced as a generalization of the

TDC (see Schmidt and Stadtmüller (2006)). It can be estimated with non-parametric

distribution models. These models have desirable statistical properties that are

inherited to the TDC and it is used to construct extreme value functions. To

estimate tail copulae and the TDCs, results of the Extreme Value Theory (EVT)

have been used. A number of results on copulae have been extended to tail copulae

and TDCs, (see Nelsen (1999), Chapter (2) and Schmidt and Stadtmüller (2006),

theorems (1-3)). In the following proposition, we use the results found in these

references. Given that all four tail copulae were defined as the exact limit of copula

functions and considering that the converse part of Sklar’s theorem states that any

copulae can be either disributional, survival, LU or UL copula, we have that all

tail copulae share the same properties.

1.2.1. Properties of Tail Copula and the Tail Dependence Coefficient.

Now we present some important properties of Tail Copula Λ, these properties

apply to any tail copula Λ and in particular to the 4 tail copulae defined before.

(see Schmidt and Stadtmüller (2006), theorems (1-3) ) .

Proposition 6. Let Λ be any tail copula according to definition (5) and (u, v)0 ∈
R2+, then Λ has the following properties:

i)(Fréchet Bounds) 0 ≤ Λ(u, v) ≤ min{u, v}.
ii) (Groundedness) Λ(u, 0) = Λ(0, v) = 0 and for (u, v)0 ∈ R2+: Λ(u,∞) = u

and Λ(∞, v) = v.

iii) (Monotonicity) Λ is non-decreasing and Lipschitz continuous.

iv) For a, b > 0: min{a, b}Λ(u, v) ≤ Λ(au, bv) ≤ max{a, b}Λ(u, v). This prop-
erty implies

a) (Homogeneity) Λ(tu, tv) = tΛ(u, v).
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b) min{u, v}λ ≤ Λ(u, v) ≤ max{u, v}λ, hence tail independence implies
Λ(u, v) = 0 for (u, v) ∈ [0,∞)2.

c) Λ(u, u) = uλ.

d) Λ(u, v) > 0 for all u, v 6= 0 or Λ(u, v) = 0 for all u, v. If for some

(u0, v0) ∈ R2+ := (o,∞)2 we have Λ(u0, v0) > 0 then
for u, v 6= 0 : Λ(u, v) > 0.

v) (Uniformity) For (u, v)0 ∈ R2+ the convergence of Λ in definition (5) is

locally uniform in R2+.

vi) (2-increasing and strict monotonicity)For (u, v)0 ∈ R2+ such that u ≤ u

and v ≤ v : Λ(u, v) − Λ(u, v)− Λ(u, v) + Λ(u, v) ≥ 0, further to this Λ is strictly
monotonic, that is if u < u and v < v then Λ(u, v) < Λ(u, v).

vii) In definition (5) it is suficient that the limit exists on the unitary circle

(u2 + v2 = 1) to ensure its existence on R2+.

viii) ∂
∂u
Λ(u, v) exists for almost all u on R+ and ∂

∂v
Λ(u, v) for almost all v on

R+ and they both lie on [0, 1]̇. In addition, both derivatives taken as univariate

functions of the other variable (not the one with respect to whom we differentiate)

are defined and non-decreasing almost everywhere.

Further to this proposition, it has been proved that the tail copula Λ exists if

the corresponding F lies in the domain of attraction of some max-estable extreme

value distribution (see Resnick (1987)).

2. Modelling Tail Dependence

We now present the tail copulae associated to some of the most important

copulae models used in finance and in other mathematical related areas. To obtain

these results we use propositions (5) and (6). The tail dependence coefficients

correspond to the case u = v = 1.
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2.0.2. Fundamental copula. The fundamental copulae are three copula which rep-

resent three extreme cases of dependence between random variables, the indepen-

dence, the perfect positive dependence and the perfect negative dependence cases.

If X and Y are independent the copula associated to them, any of the four

types of copula, is C(u, v) = u ·v which is known as the independence copula. The
corresponding tail copulae are all equal to zero. As expected in this case all four

TDCs are zero.

If X = Y or they have a perfect positive dependence, their corresponding copula

is C(u, v) = min{u, v} known as the comonotonicity copula, the corresponding tail
copulae are:

ΛL(u, v) = ΛU(u, v) = min{u, v},

ΛLU(u, v) = ΛUL(u, v) = 0.

If X = −Y or they have a perfect negative dependence, their corresponding

copula is C(u, v) = max{u+ v− 1, 0}, which is known as the countermonotonicity
copula with corresponding tail copulae:

ΛL(u, v) = ΛU(u, v) = 0,

ΛLU(u, v) = ΛUL(u, v) = min{u, v}.

2.0.3. Implicit Copulae. Implicit copulae are implied from bivariate distribution

functions through the converse statement of Sklar’s theorem, (see Sklar (1959)).

In the two examples we consider no closed form of the copula can be obtained but

the corresponding copula can be expressed in terms of integrals of the bivariate

densities. The examples are the Gaussian copula and the Student’s t with ν

degrees of freedom, in both copulae we assume a correlation of 0 < ρ < 1, and the

distributional copulae can be expressed in terms of their corresponding densities

Cρ(u, v) =

G−1(u)Z
−∞

G−1(v)Z
−∞

fρ(s, t)dsdt.
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All Gaussian tail copula ΛGa
ρ (u, v) is equal to zero and the Student’s t tail copulae

are

Λt
L,ρ(u, v) = Λt

U,ρ(u, v)

= u · tν+1
µ
−
r

ν + 1

1− ρ2

µ³u
v

´ 1
ν − ρ

¶¶
+v · tν+1

µ
−
r

ν + 1

1− ρ2

µ³v
u

´ 1
ν − ρ

¶¶
,

Λt
LU,ρ(u, v) = Λt

UL,ρ(u, v) = Λt
L,−ρ(u, v).

with tν+1 the standard Student’s t distribution function with ν + 1 degrees of

freedom.

2.0.4. Explicit Copulae. Explicit copulae are copulae that have simple closed forms

The examples of explicit copulae we consider are the Gumbel, Clayton, Frank, the

Generalized Clayton and the Marshall-Olkin copulae (see Schmidt and Stadtmüller

(2006)).

Gumbel Copula. For θ ≥ 1, the Gumbel Copula has the form:

CGu
θ (u, v) = exp[−((− lnu)θ + (− ln v)θ) 1θ ].

The corresponding upper tail copula is ΛGu
U,θ(u, v) = u+ v − (uθ + vθ)

1
θ , the other

tail copulae are equal to zero.

Clayton Copula. For θ ∈ [−1,∞)\{0} the Clayton Copula is:

CCl
θ (u, v) = [max{u−θ + v−θ − 1, 0}]− 1

θ .

The Clayton lower tail copula is ΛCl
L,θ(u, v) = (u

−θ+ v−θ)−
1
θ , the other tail copulae

are zero.

Frank Copula. For θ ∈ R the Frank Copula is defined as:

CFr
θ (u, v) = −

1

θ
ln

µ
1 +

(exp(−θu)− 1)(exp(−θv)− 1)
(exp(−θ)− 1)

¶
.

The four corresponding tail copulae are equal to zero.
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Generalized Clayton Copula. For θ > 0 and δ ≥ 1 the Generalized Clayton Copula
is given by:

CGC
θ,δ (u, v) = {[(u−θ − 1)δ + (v−θ − 1)δ]

1
δ + 1}− 1

θ .

The corresponding tail copulae are:

ΛGC
L,θ,δ(u, v) = (u−θδ + v−θδ)−

1
θδ ,

ΛGC
U,θ,δ(u, v) = u+ v − (uδ + vδ)

1
δ ,

ΛGC
LU,θ,δ = ΛGC

UL,θ,δ = 0.

Marshall-Olkin Copulae. The survival Marshall-Olkin Copulae is

C
MO
(u, v) = min{uv1−α2 , u1−α1v}.

The corresponding lower tail copula is ΛMO
L (u, v) = min{α1u, α2v}, the other tail

copulae are equal to zero.

With the exception of the Student’s t case all LU and UL are equal to zero.

Hence if we want to model data with LU or UL tail dependence we should not

use any of these copulae as distributional copula, instead they can be used LU

or UL copula, with the help of Table (1) we can do this without obtaining the

corresponding copulae again.

3. Conclusions

In the present paper we have developed theory to measure the whole tail de-

pendence structure between random variables using copula, tail copula and the

tail dependence coefficients. We have developed theory to encompass the negative

dependence case which has been overseen in copula theory.

In the first section we obtained several theoretical results regarding these con-

cepts. The most important one is the Sklar theorem for LU and UL probability
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functions which we stated and proved. This theorem complements the Sklar’s the-

orem for distribution and survival functions and guarantees the existence of LU

and UL copulae CLU and CUL.

Together with the distributional ( c°) and the survival copulae, these two types
characterise the dependence structure between random variables. With them it is

possible to analyse negative dependence including negative tail dependence. We

carried out a thorough analysis of the relationships among the four types of copulae

associated to a random vector.

We obtained several results regarding copula and introduced the concept of

transverse copula which comes from the relationship found for copula. This concept

characterises the dependence structure between copulae.

After this we defined the four corresponding types of tail copula and the tail

dependence coefficients for which we studied the main properties. We obtain some

equivalent expressions for tail copula that are useful to obtain tail copula associated

to copula models.

In the second section we used the results obtained in the first section to analyse

copula models. We obtained expressions for the four types of copula, tail copula

and the tail dependence coefficients. The examples we analysed correspond to

three types of copula models. The fundamental copula, which encompass the

perfect dependence cases. The implicit copulae, which arise when a particular

distribution function is assumed, we analysed the Gaussian and the Student’-((t))

copula. Finally we studied explicit copulae for which closed form expressions exist,

we studied four Archimedean and the Marshall Olkin copula.

We found that the Studen-((t)) copula model is the only one that accounts for

all the types of tail dependence where as the Independence, the Gaussian and the

Frank copula models do not account for any type of tail dependence. Further to

this only the countermonotonicity and the Student-((t)) copula models account

for negative tail dependence. The values of the LU and UL tail copula are equal
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to zero for all the other copula models. This means that when these models are

used there is an underlying assumption of no negative tail dependence that might

bear unwanted side effects.
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